## Taming the Beast Workshop

# Bayesian inference of species tree and \*BEAST

Chi Zhang

June 28, 2016

C L vo

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Febenstein likelihood Posterior distribution starBEAST2

# Species tree

 Species tree — the phylogeny representing the relationships among a group of species



Figure adapted from [Rogers and Gibbs, 2014]

 Gene tree — the phylogeny for sequences at a particular gene locus from those species Bayesian inference of species tree "BEAST Species tee prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posterior distribution tradE6452

## Taming the Beast

## Gene tree discordance

Incomplete lineage sorting



Figure adapted from [Patterson et al., 2006]

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Pedenstein likelihood Posterior distribution starBEAST2

## Gene tree discordance

- ► Horizontal gene transfer
- Gene duplication and loss



Figure adapted from [Degnan and Rosenberg, 2009]

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posterior distribution starBEAST2

## Taming the Beast

## Gene tree discordance

Hybridization



Figure adapted from [Li et al., 2016]

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posteriori distribution starBEAST2

# Species tree inference and \*BEAST

- ► A Bayesian method to infer species tree from multilocus sequence data [Heled and Drummond, 2010]
- ▶ \*BEAST, a functionality of BEAST2
- Gene trees are embedded in the species tree under the multispecies coalescent model [Rannala and Yang, 2003]
  - incomplete lineage sorting
- Gene trees are independent among loci



Bayesian inference of species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Pestenstein likelihood Posterior distribution starBEAST2

## Species tree prior

► The prior for species tree S has two parts:

$$P(S) = P(S_T)P(N)$$

## • $S_T$ — species time tree

N — population size functions

## ▶ $P(S_T)$ — typically a Yule (pure-birth) or birth-death prior

- we can assign a hyperprior for the speciation (birth) rate (and extinction (death) rate, if birth-death)
- ▶ P(N) constant or continuous-linear

#### Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posterior distribution starBEAST2

## Species tree prior

## Constant population sizes



Figure adapted from [Drummond and Bouckaert, 2015]

Taming the Beast

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posteriori distribution starBEAST2

## Species tree prior

Continuous-linear population sizes



Figure adapted from [Drummond and Bouckaert, 2015]

## Taming the Beast

Bayesian inference of species tree Species & gene trees BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posterior distribution starBEAST2

- ► In \*BEAST, the prior type for N is fixed to gamma
- The gamma shape parameter k is fixed to 2, but we can assign a hyperprior for ψ, the scale parameter of the gamma
- (This ψ parameter is called "population mean" in Beauti, but the prior mean is actually 2ψ when the population sizes are constant)

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Poaterior distribution starBEAST2

## Multispecies coalescent model

 $\blacktriangleright$  The prior for gene tree g, given species tree S



Figure adapted from [Drummond and Bouckaert, 2015]

#### Taming the Beast

Bayesian inference of species tree >BeasT \*BEAST Species & gene trees Multispecies coalescent Molecular clock model Pestensten likelihood Posterior distribution starBEAST2

# Multispecies coalescent model

The prob. distribution of gene time tree g given species tree S, is:

$$\mathsf{P}(\mathsf{g}|\mathsf{S}) = \prod_{j=1}^{2s-1} \mathsf{P}(\mathsf{L}_j(\mathsf{g})|\mathsf{N}_j(\mathsf{t}))$$

- s number of extant species (2s − 1 branches totally)
- ► N<sub>j</sub>(t) population size function (linear)
- L<sub>j</sub>(g) coalescent intervals for genealogy g that are contained in the j'th branch of species tree S



Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Fedenstein likelihood Posterior distribution starBEAST2



# Molecular clock model

▶ P(c) — prior for the molecular clock model of genealogy g

- strict clock typically fix to 1.0 for the first locus, and infer the relative clock rates for the rest loci
- relaxed clock
- ▶  $P(\theta)$  prior for the substitution model parameters
- ▶ e.g. HKY85,
  - Prior for transition/transversion rate ratio (κ), e.g. gamma(2,1)
  - ► Prior for base frequencies  $(\pi_T, \pi_C, \pi_A, \pi_G)$ , e.g. Dirichlet(1,1,1,1)

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Posteriori distribution starBEAST2

The probability (likelihood) of data d<sub>i</sub> (alignment at locus i), given the gene time tree g<sub>i</sub>, molecular clock c<sub>i</sub>, and substitution model θ<sub>i</sub>, is:

$$P(d_i|g_i, c_i, \theta_i)$$

Bayesian inference of species tree Species & gene trees \*BEAST Species tree pror Multispecies coalescent Molecular clock mode Pelsenstein likelihood Posterior distribution starBEAST2

# Priors and likelihood

- ▶ P(S) prior for species tree
- ▶  $P(g_i|S)$  prior for gene tree i (multispecies coalescent)
- $P(c_i)$  prior for clock rate of locus i
- $P(\theta_i)$  prior for substitution parameters of locus i
- ▶  $P(d_i|g_i, c_i, \theta_i)$  likelihood of data at locus i

Bayesian inference of species tree \*BEAST Species & gene trees \*BEAST Multispecies coalescent Molecular clock model Posterior distribution starBEAST2

The posterior distribution of the species tree S and other paremeters given data D is:

$$P(S, \mathbf{g}, \mathbf{c}, \Theta | D) \propto P(S) \prod_{i=1}^{n} P(g_i | S) P(c_i) P(\theta_i) P(d_i | g_i, c_i, \theta_i)$$

► The data D = {d<sub>1</sub>, d<sub>2</sub>, ..., d<sub>n</sub>} is composed of n alignments, one per locus.

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Pestenstein ikelihood Posterior distribution starBEAST2

# Integrating out population sizes

- Assume constant population sizes
- Assign i.i.d inverse-gamma( $\alpha$ ,  $\beta$ ) prior for N<sub>j</sub>
  - mean =  $\beta/(\alpha 1)$
- The population sizes N can be integrated out from P(g|S) [Jones, 2015]
- Specify α and β in the invgamma prior (instead of ψ in the gamma prior)

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Pestenstein likelihood Posterior distribution starBEAST2

# starBEAST2

► A more efficient implementation and an upgrade of \*BEAST

- Population sizes integrated out [Jones, 2015]
- Relaxed molecular clock per species tree branch (instead of per gene tree branch)
- More efficient MCMC proposals for the species tree and gene trees (coordinated operators) [Jones, 2015, Rannala and Yang, 2015]
- Available at github.com/genomescale/starbeast2, will be released soon (as a BEAST2 add-on)

Bayesian inference of species & gene trees \*BEAST Species & gene trees Multispecies coalescent Molecular clock model Felsenstein likelihood Posterior distribution starBEAST2

#### Taming the Beast

## References I

- Degnan, J. H. and Rosenberg, N. A. (2009). Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends in Ecology & Evolution, 24(6):332–340.
- Drummond, A. J. and Bouckaert, R. R. (2015). Bayesian Evolutionary Analysis with BEAST. Cambridge University Press.
- Heled, J. and Drummond, A. J. (2010). Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27(3):570–580.
- Jones, G. R. (2015). Species delimitation and phylogeny estimation under the multispecies coalescent. bioRxiv.
- Li, G., Davis, B. W., Eizirik, E., and Murphy, W. J. (2016). Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). *Genome Research*, 26(1):1–11.
- Patterson, N., Richter, D. J., Gnerre, S., Lander, E. S., and Reich, D. (2006). Genetic evidence for complex speciation of humans and chimpanzees. *Nature*, 441(7097):1103–1108.
- Rannala, B. and Yang, Z. (2003). Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. *Genetics*, 164(4):1645–1656.
- Rannala, B. and Yang, Z. (2015). Efficient Bayesian species tree inference under the multi-species coalescent. arXiv.org.
- Rogers, J. and Gibbs, R. A. (2014). Comparative primate genomics: emerging patterns of genome content and dynamics. Nature Reviews Genetics, 15(5):347–359.

Bayesian inference of species tree Species & gene trees \*BEAST Species tree prior Multispecies coalescent Molecular clock model Felsenstein likelihood Posterior distribution starBEAST2